Machine Learning
Useful Resources
http://www-bcf.usc.edu/~gareth/ISL/
https://www.r-project.org/about.html
https://www.rstudio.com/products/rstudio/
https://www.kaggle.com/c/digit-recognizer
TensorFlow and general SW learning website
References
[1] C.J. Wu et al., Machine Learning at Facebook: Understanding Inference at the Edge [From Facebook]
[2] N.P. Jouppi et. al., In Datacenter Performance Analysis of a Tensor Processing Unit [From Google]
[3] Vivien Sze et. al., Efficient Processing of Deep Neural Networks: A tutorial and survey [From MIT]
[4] Amr Suleiman et. al., Navion: A 2mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Drones [From MIT]
Handwriting Learning Code Example
Example 1
library(h2o) h2o.init(nthreads = 6) h2o.removeAll() traindat=read.csv("train.csv") traindat[,1] = as.factor(traindat[,1]) traindat[,2:785] = ifelse(traindat[,2:785]>20, 1, 0) par(mfrow = c(10,10), mar = c(0,0,0,0)) for (i in 1:100) { y = as.matrix(traindat[i,2:785]) dim(y) = c(28,28) image(y[,28:1], col = gray(1:0), axes = FALSE) text(0.2, 0, traindat[i,1], cex = 3, col = 2, pos = c(3,4)) } train.h2o = as.h2o(traindat) nnmodel.h2o = h2o.deeplearning( x = 2:785, y = 1, training_frame = train.h2o, activation = "RectifierWithDropout", input_dropout_ratio = 0.2, balance_classes = TRUE, hidden = c(1024,1024,1024), l1 = 1e-5, classification_stop = 0.001, epochs = 100 ) testdat = read.csv("test.csv") testdat = ifelse(testdat>20, 1, 0) test.h2o = as.h2o(testdat) pred.h2o = h2o.predict(nnmodel.h2o, newdata = test.h2o) pred = as.data.frame(pred.h2o) par(mfrow = c(10,10), mar = c(0,0,0,0)) for (i in 1:100) { y = as.matrix(testdat[i,]) dim(y) = c(28,28) image(y[,28:1],col = gray(255:0/255), axes = FALSE) text(0.2, 0, pred[i,1], cex = 3, col = 2, pos = c(3,4)) }
Example 2
library(h2o) h2o.init(nthreads = 6) h2o.removeAll() train.h2o = h2o.importFile("train.csv") train.h2o[,1] = as.factor(train.h2o[,1]) nnmodel.h2o = h2o.deeplearning( x = 2:785, y = 1, training_frame = train.h2o, activation = "RectifierWithDropout", input_dropout_ratio = 0.2, balance_classes = TRUE, hidden = c(1024,1024,1024), l1 = 1e-5, classification_stop = 0.001, epochs = 100 ) test.h2o = h2o.importFile("test.csv") pred.h2o = h2o.predict(nnmodel.h2o, newdata = test.h2o) testdat = as.data.frame(test.h2o) pred = as.data.frame(pred.h2o) par(mfrow = c(10,10), mar = c(0,0,0,0)) for (i in 1:100) { y = as.matrix(testdat[i,]) dim(y) = c(28,28) image(y[,28:1],col = gray(255:0/255), axes = FALSE) text(0.2, 0, pred[i,1], cex = 3, col = 2, pos = c(3,4)) }